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SUMMARY 

The purpose of this paper is to Illustrate an application 

of linear programming to the problem of allocation of aircraft 

to routes in order to maximize expected profits when there is 

uncertain customer demand. The approach is intuitive; the 

theoretical basis of this work is found in an earlier study. 

The allocations are compared with those obtained under the 

usual procedure of assuming a fixed demand equal to the expected 

value. The computational procedure is similar to that of the 

fixed-demand case, with only slightly more computational effort 

required. 

This paper is intended both for readers interested in 

routing problems (and analogous resource-allocation problems) 

and for those interested in studying an example of an appli- 

cation of linear programming under uncertainty. 
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THE ALLOCATION OF AIRCRAFT TO ROUTES—AN EXAMPLE 
OF LINEAR PROGRAMMING UNDER UNCERTAIN DEMAND 

1.  INTRODUCTION 

There are many business, pronomic, and military problems 

that have the following characteristics in common: a limited 

quantity of capital equipment or final product must be al- 

located among a number of final-use activities, where the level 

of demand for each of these activities, and hence the payoff, is 

uncertain; further, once the allocation is made, it is not eco- 

nomically feasible to reallocate because of geographical sepa- 

ration of the activities, because of differences in form of the 

final products, or because of a minimum lead time between the 

decision and its implementation. Examples of such problems are 

(l) the scheduling of transport vehicles over a number of routes 

to meet a demand in some future period and (2) the allocating of 

quantities of a commodity at discrete time intervals among 

several storage or distribution points while the future demand 

for the commodity is unknown. It is assumed, however, that 

demand can be forecast or estimated as a distribution of values, 

each with a specified probability of being the actual value. 

The general area where the techniques of this paper apply 

may be schematized broadly as problems where: 

1. Alternative sets of activity levels can be chosen 

consistent with given resources. 

2. Each set of chosen activity levels provides the 

facilities or stocks to meet a demand that is itself 

unknown but that nas a known 1'requency distribution. 
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j.    Prof'lLs depend on  the coats of  the  facilities,  or 

otocKS,   and  on  the   revenues   from  the demand. 

'♦ .     The general  objective  is   to determine   that  set of 

MCM.w^v   Levein  that  ma^l-'l/es  profits. 

The  parnT ^-ntltled   "Linear  Programming under Uncertainty" 

[/■]   i'orms   the  thieorctic^ij   basis   for  the  present  work.     Our pur- 

ify.;'    is   to   1.litL trat'5   trie  procedural   st''ps   with   the  example 

tnat,   In   iaut,   : rJ,;lri,;Lly  pr'ompted   the  referenced  theoretical 

worse   in   this   ii^-a .     THUS,   llt.th-   In   the   way  of  rigorous   theory 

will   be  attempteJ   In  this  [lapur,   although  each  step  will  be 

jusiiflea   IntuitLv;ly. 

Tne  methud   l.s  explained   by   tlie  use of  a mod^i   for   routing 

aircraft.    ;>ViMl  types of aircraft aru  allocated over a  number 

of  routes;   ;:■•  'nunUily  jemand   for st^rvicu  over each   ruutu  is 

assufi;ed   to  'K.   .cr.own only as  a diotr'ibution  of probabl(?   vabu.'o. 

Th.e  aircraft  ,:,l,.•   :u,.  nllucated  as   to iMJuiinJ zt,1   the   simi of   (a)   the 

.:',...;i  of  pox'forihii g  thu   transf.iortation  and   (b)   t.-uj  expect^-d   value 

■.',•:  trie  revenue   lost  through  the   ['allure  to  serve   all   the   traffl. 

laat  actual .ly  a ^eJoios . 

For  ,jur;.;);:es   uf  n.c^nt/t-to—month   a aie^Jul l.ng,    a/   '•.la'   tauiapwrt 

w; '■['■''i.or   /.oui ..   pa'''.UJ:iMb]y,   f'.'-l   b"tt''r'   ibout  riavin.;   I J   ;.,   ,: ■    a, 

'■sti-;.ate  of  tn"   .'ai'''  aria  general  (iistr'lbution of  future   tr;.';J 

(or  aalpr.ji: v)  ov:^- ai.;   rout-;...   than   about  having   to   corunlt  ni.i.- 

ai-Lt'  to  a  sir,.-".it:  i'xpecteu   value.     Irnra.'d,   he idignt   I'eol   triit 

la'  uatinial  .-.■ssl ,';r :[,ent   shoulu   ta ■   insensitive   to  a  wide   rail,',-;  of 

h.ar.i.i    ; J. trlsui lenj,  ma   tr.it    in  assi-'n;;,'.'r.t   based  on t- ; 

.. ;lu ;s ,-i<'V''  /nown aaia )   wo ill   b ;   .;.l."- !•     11. 
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It la suggested  that the reader make  sensitivity  tests  by modi- 

fying the demand distributions given  in   the illustrative  example. 

Passenger demand,  of course,  occurs  on a day—by-day—in 

fact, on a flight-by-flight basis.    The  assumed  number of pas- 

sengers per aircraft of a given  type per flight  on  a given  route 

may  be  thought of as an  ideal  number  that   can  be   increased 

slightly by decreasing the amount of air  freight   when  this   is 

indicated,  and  by "smoothing"  the demand  through  encouraging 

the customers  to  take open  reservations  on alternative  flights 

as opposed to less certain reservations on desired  flights.     In 

spite of these possible adjustments,   traveler preferences and 

the inevitable  last-minute cancellations  do cause   loss  of pas- 

senger-carrying capability.    However,   the  best  way  to  reflect 

these effects of the daily variations  in  demand  are  beyond  the 

scope of this paper.    For our purpose here,  either  the  aircraft 

passenger-carrying capability or the demand may  be  thought of  as 

adjusted downward to reflect the  loss due  to daily  variations 

of demand. 

The method employed is simple,  and   the example used  can  be 

solved by hand in an hour or two.    Larger problems  can  be  solved 

with computing machines. 

In a previously published paper   [l] ,   the method  was  applied 

to the same example, assuming the demand  on each  route  to  be 

known;*  the present paper continues  the  analysis,   showing how 

This was equivalent  to using the  expected   value  of demand, 
rather than  taking account of  the whole  frequency  distribution, 
as in the present paper. 
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t,ü handle a frequency distribution of demand relative to each 

route. A different allocation is found to be optimal in this 

case. 

We shall row describe the problem, briefly indicate the 

nature of the solution based on expected values, show the method 

of solving the problem using stochastic values for demand, and 

finally compare the two solutions. 
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2. REVIEW OF FIXED-DEMAND EXAMPLE 

The fixed-demand example that we are using to illustrate 

the method takes a fixed fleet of four types of aircraft, as 

shown in Table 1. 

Table 1 

ASSUMED AIRCRAFT PL] SET 

Number 
Type Description Available 

A Postwar 4-engine 10 

B Postwar 2-engine 19 

C Prewar 2—engine 25 

D Prewar ^—engine 15 

These alrcrai't have differences in speed, range, payload capacity, 

and cost characteristics. The asomneu routes and expected traffic 

loada (the distribution of demand will be discussed later) are 

given in Table 2. 
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Table 2 

TRAFFIC LOAD BY ROUTE 

Route 
Route 
Miles 

Expected 
Number of . 
Passengers 

Price 
One-way 
Ticket   ($) 

(1) H.Y.-L.A. (1-stop) ?,J)7L) 2lj,000 150 

(^ N.Y.-L.A. (2-:; top) 2,47b 12,000 UO 

(;) N.Y.-Dnilas (0-3top) 1,581 18,000 70 

(") N.Y.-Dallas (1-stop) 1,09 9,000 70 

(s) N,Y.-Boston (O-otop) 18', 00,000 10 

Ofl'lclal Airline Guide, July, 19'^t, p. 27b. The New York- 
Los Angeles routes are via Chicago and via Chicago and Denver; 
the stop on route between New York and Dallas is at Memphis. 

This is the expected number of full one-way trips per 
month to be carried on each route.  If a passenger gets off 
en route and is replaced by another passenger, it is counted 
as one full trip. 

.Since this paper proposes to illustrate the applicability 

of a method of solving problems in which several realistic ele- 

ments are considered, it is assumed that not all aircraft can 

carry their full loads on all routes and that the obtainable 

utilization varies from route to route. Specifically, Type B 

Is assumed to be able to operate at only 7Lj  per cent payload on 

Route 3, and Type D at 80 per cent on Route 1; Type C cannot . 

fly either Route 1 or Route ),  and Type B cannot fly Route 1. 

Utilization is defined as the average number of hours of useful 

work performed per month by each aircraft assigned to a particular 
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route. Utilization of )00 hours per month is assumed on Routes 

1 and 2, 285 on Routes 3 and 4, and 240 on Route 5. 

The assumed dollar costs per 100 passenger-miles are shown 

in Table 3. These do not include any capital costs such as those 

of the aircraft and ground facilities. They represent variable 

costs such as the cost of gasoline, salaries of the crew, and 

costs of servicing the aircraft. 

A second sort of "cost" is the loss of revenue when not 

enough aircraft are assigned to the route to meet the passenger 

demand. In this case, the loss of revenue is the same as the 

price of a one-way ticket shown in the E row of Table 3- 

Table 3 

DOLLAR COSTS 

Type of 
Aircraft 

Route 

] - N.Y. 
to L.A. 
l-stop ($) 

2 - N.Y. 
to L.A. 
2-3top ($) 

3 - N.Y. 
to Dallas 
O-stop ($) 

4 - N.Y. 
to Dallas 
l-stop ($) 

5 - N.Y. 
to Boston 
O-stop (|) 

Per 100 Passe iger-miles 

1  - A OAb 0.57 0.45 0.47 0.64 

2 - B — 0.04 0.83 O.63 0.88 

3 - C — 0.92 — 0.93 1.13 

4 - D 0.74 O.bl 0.b9 0.62 0.81 

Per Passenger Turned Away' 

130 

(13) 

130 

(13) 

70 

(7) 

70 

(7) 

10 

(1) 

Figures shown in parentheses are 1000's of dollars lost per 
100 passengers turned away.  (Throughout this paper, passengers 
are measured in units of hundreds.) 
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BaaeA  on the speeds, ranges, payload capacities, and turn- 

around times, passenger-carrying capabilities were determined. 

The resultant potential number p, . (in hundreds) of passengers 

that can be Clown per month per aircraft of type i on Route J 

Is shown in Table 4; see the staggered upper right figure in 

each box.  By multiplying these numbers by the corresponding 

costs per 100 passenger-miles given in Table )  and by the number 

of miles given in Table 2,   the monthly cost per aircraft can 

il:-.ü be obtained. This is given in the lower left figure c. , 

Ln each box; explicitly, c . is the cost In thousands of dollars 

per month per- aircraft of type 1 assigned to the Route J.  The 

revenue losses c, ,f In thousands of dollars per 100 passengers 

not carried, are given in the E row of Table Ji ; finally, we de- 

fine p  = 1.  The staggered layout of Table 4 was chosen so 

as to identify the corresponding data found in Table a; the 

latter is the work sheet upon which the entire problem is solved. 

The basic problem is that of determining the number of air- 

craft of each type to assign to each route consistent with air- 

craft availabilities (Table 1) and of determining how much rev- 

enue will be lost due to failure of allocated aircraft to meet 

passenger demand on various routes (Tables 2 and j)) . Since many 

alternative allocations are possible, our1 specific objective will 

be to find that allocation that minimizes total costs, where 

costs are defined as operating costs plus lost revenues basea 

on the cost factors given in Table }. 

This will make it easier-to form the passenger-balance or 
"column" equations (2). 
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Tablc l\ 

PASSENGER-CARRYING CAPABILITIES3  AND COSTS5 

Route 

Type of 
Aircraft 

1 - N.Y. 
to L.A. 
1—stop 

2 - N.Y. 
to L.A. 
2-stop 

j  - N.Y. 
to Dallas 
O-stop 

4 - N.Y. 
to Dallas 
1-stop 

3 - N.Y 
to Boston 
0-stop 

Per Aircraft per Month 

1 - A Pi i = lö 

a,i=l8 

Pl2=15 

cl2=21 

Pi 3 = 28 

Cl3=l8 

Pl4=2^ 

C 14=10 

Pl5=8l 

0,5=10 

2 - B -» P22=10 

C22=l
lJ 

P23=14 

C23=l6 

P24=15 

C24=l4 

P25=37 

C25 = 9 

5 -  C ♦ P32 = CJ 

C32=10 

t P34=7 

C34 = 9 

P35=29 

C35 = Ü 

4 - D P41=9 

C41=17 

p42=ll 

C42=16 

P43=22 

C43=17 

P44=17 

C44 = 1LJ 

P45 = 3C) 

045=10 

Per 100 Passengers Not Ccrrled   (Losses) 

5 - E P51 = l 

C5i = U 

P52=l 

C52 = U 

P53=l 

C53 = 7 

P54 = l 

C54 = 7 

P55 = l 

C55 = l 

Capabilities p. ■ are measured in hundreds of passengers. 

Costs c. | are measured in thousands of dollars. 
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Thls flxod •demand model may bo Cormulatcd mathematically 

as r' llnfat' pr-o/,ramming problem.  Let x ( denote the unknown 

th th 
niJ/nber oC aircraft 01' tne i ' typo anal,mod to J ' route, where 

, n-l.  11' x.  denotes the 
' in 

th 

i ■ 1 , 2,   m and j - 1 , 

number of surpluo or unallocated aircraft of the iv" type, then 

i. I.   (') b.'.l(;w atate':; that the aum oi illocated and unallocated 

.■.'! rcraf t o:' tne 1   typo accounta for the i.otal number a. of 

available alrcr'aft of tola type.  If ;■:  , . aenolea tntj number 
;;,-il,,j 

,     , , t h o!   paasi.'rii'era   In  (lundreaa   turnend  away   ! rom  trie  J       route per 

month,   tpen   K'{.   (d)   atatea   tdiat   tne   LJUJN ad'   the  paaaenaer-carrying 

capabllitiea of all  aircral't allocatu'd  to  the  J       route,  pluo 

the  unaatiaflea  demand,   accounts   for  tne   total  demand  d,  on  the 
J 

route.     Relation   ( ■■)   ;;tatea  that   r.]   uiiiviiewn   [uantltioa   x, , 
i J 

muat   be  eltner positive or zero.     Finally,   if  c,   (i   -   ],   2,   ...,  m) 

is   the monthly  coat  of m.jintaininr' an  .'ilrcrafd.  ol'  tlie   i       type 

when  not  in  use,   then   the   total   coat   z  is   the  sum of  all   tlie 

inaividual  operating';  /(Kits  plus   the  revenue  lust  by  unsatisfied 

It;;;,amis  c     ,        x     ,    . ,   as  i-,iven   in   L'J i .   (" ) - 
H.I-   1    ,   ,, Wl  (    .    ,   J 
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r 
1  

FIXED-DEMAND MODEL 

Find number?, x. ., and the minimum value of z, satisfying 

the followinp; conditions. 

xn + x12 + ... + xin = ai (1) How Gums : 

(i 1, 2, ..., m), 

(2) Column Sums:  i>. .x -1- p x  + . . . + p .x . = d . x   '                                     ' 1J 1J ' 2.) 2j        MnJ mj   J 

O) 

(M 
m+1  n 

1=1 J=l   i 

(J - 1, 2, ..., n-1), 

XU ^ 0' 

JXij 
z . 

L_ 

Any set of aaslgnmento x, , satisfying Eqs. (l), (2), and (3) 

is termed a feasible solution, and a feasible choice that min- 

imizes the total cost z of the assignment is called an optimal 

(feasible[ solution. 

Table ';. shows the optimal assignment of aircraft to routes, 

based on fixed demand, as developed in the earlier study.  The 

values assigned to the unknowns x. , appear underlined in the 

upper left of each box unless x, , = 0 in which case it is omitted; 

the entire layout takes the form: 

•ij 

'U 

U 
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Th'j auma by rows of the x, . entries in Table 'j equated to avail- 

fibilitiea yield Eqs. (l). The sums by columns of the x. , weighted 

by corresponding values of  p. . equated to demands yield Eqs. (2); 

t.ho x. , weighted by corresponding c, . and summed over the entire 

table yield Eq. (4).  As noted earlier, Table '■)  is actually the 

v/ork sheet upon which the entir'e problem is solved.  Later we 

shall discuss a revision of this work sheet for solving problems 

with variable demand.  All figures in the table, except for the 

upper left entries x. , and values of the so-called "implicit 

prices" u. and v, shown in the margins, are constants that do 

not change during the course of computation. The values of the 

variables x. ., u., and v., however, will change during the course 

of successive iterations of the simplex method as adapted for 

this problem. For this reason it is customary to cover the work 

sheet with clear acetate and to enter the variable Information 

with a grease pencil so that the marks can be easily erased; 

alternatively, a blackboard or semitransparent tissue—paper 

overlays can be used. The detailed rules for obtaining the 

optimal solution shown are given in [l] and will not be repeated 

acre.  Instead, a more general set of rules for1 the uncertain- 

demand case will be given; these, of course, could be used in 

particular for the expected-demand case. 

In the following outline we have a convenient summary that 

serves to identify and define the numerical data entered in 

Table '; and to give the test for optimality. 
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Table 

OPTIMAL ASSIGNMENT FOR FIXED DEMAND 
Operating Costa and Lost Revenues = $1,000,000 

Route 

Air- 
craft 
Avail- 
able 

Type 
of 
Air- 
c ra f I 

(1) 
N. Y. 
to 
L. A. 
1-3tOp 

(2) 
N. Y. 
to 
L. A. 
2-stop 

0) 
N. Y. 
to 
Dallas 
O-stop 

CO 
N. Y. 
to 
Dallas 
1-stop 

(5) 
N. Y. 
to 
Boston 
O-stop 

(6) 
Sur- 
plus 
Air- 
craft 

Im- 
plicit 
Prices 

ui 

(1) A 

10 

16 

18 21 

28 

18 

2j 

16 

81 

10 

C 

0 

lü=a1 

-171 

(2) B #■» 

8 

10 

is 

b 
14 

16 

6 

13 

14 

37 

9 

0 

0 

19=a2 

- 31 

* X- 

7.8 

10 

* *• 7 

9 

17.2 

0 

0 

23=a3 

Ü) c 29 

6 - 25 

(M D 

10 

9 

17 

11 

15 

5 
22 

17 

17 

15 

35 

10 

0 

0 

15=a4 

- 89 
■ 

(5) E 

Deficit 

l 1 1 

7 

1 

7 

100 

1 

1 

0 

0 

## 

0   
Demand 

230 120 180 90 600 *  -K 

Im- 
plicit 
Prices 

V1 

11.8 0.0 '1.8 4.J53 1 0 
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SUMMARY 

= Dumber of ava L.I able aircrafL uf 
hypo 1 

expected pauGenfer üemand In lüü'o 
per month on Hout-o ,I 

1, 

ümiLted x, , Entrioü 

Implicit Price;.;: 

paoooncer-carry.1 nr, capabi L1.Ly   In 
lOO'o  per month  per aircraft o!' 
type i asair^ned   to Haute  J 
(n     .    ,  ^  1   by definiI Ion) 

coGta   Ln   lüOü1:;  of dollar;;  per 
month per aircraft of  type  i 
an Ginned  to Route   I   (c     ,    .   1.; 

inn "Hi,, p'M' 100 püü.'ionijer'ö 
turned away) 

X] |  :   number of aircraft of  type   1 
a.'joirned  to Route  j   (x     ,    .   .u:   lüü1 

of paGaen^ers  turned ''' 
away) 

x. .  =0 if upper left entry  in  box iü 
miGGinj: 

u,   and  v.   are determined  auch  that 

u.   + p. ,v,  = c. .   for  (i,,J)  boxeG  witii 
•t        ij   j        ij 

x. ,  > 0—i.e.,  with underlined  entriea. 

Note:     u     ,   =  V     =0 m\-1        n 

Teat for Optimallty Solution is optimal if, for all (i;, 
the relation u. + P^ [v i < c| i holdG 
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5.  EXTENSION OF EXAMPLE TO UNCERTAIN DEMAND 

Up to this point the problem is Identical with that de- 

scribed and solved in our previous paper. Now, to introduce 

the element of uncertain demand, we assume not a known (expected), 

demand on each route but a known frequency distribution of demand. 

The assumed frequency distributions are shown in Table 6. Thus 

on Route ') (N.Y. to L.A. - 2-stop) either ^,000 or 15,000 pas- 

sengers will want transportation during the month, with prob- 

abillties !)Q  or 70 per cent respectively. The assumed traffic 

distributions are, of course, hypothetical to illustrate our 

method. The demand distributions on the five routes vary over 

wide ranges and have different characteristics; Route 1 is flat, 

Route 2 is U-shaped, Routes $,  4, and 5 are unimodular but have 

differing degrees of concentration about the mode. Route 4 has 

a distribution with a very long tail that may reflect a real- 

istic traffic situation. 
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Table b 

ASSUMED DISTRIBUTION OF PASSENGER DEMAND 
>\, . = Probability of Demand d, , 

Probability 
Probability 
of Equaling 

Passengers Approx. Mean of Passenger or Exceeding 
Route (in hundreds) (in nundreds) Demand ■ Demand 

200 - du no  _A U . c    -    I] i.o - rM 

220 = dg, O.O'j - A21 0.8 • y21 

1 - A 2U)0 ■= d31 2LjO 0.33 - Ä31 0.7-  2r31 

270 = d4. 0.2  - A,! 0.4   <T41 

^00 - d5l 0.2  =A51 0.2 = ?31 

•;0 = d12 0.3 = ^12 1.0  = Jf i a 
2 - B 

150 - d22 
120 

0.7  =^22 0.7 = ^22 

140 = d13 0.1  = Al3 1 ,0  - ^a 

100 = d23 0.2  =A23 0-9  = ^23 

b - c 1Ö0 --■ daa 180 0.4  =^33 0.7   --   #33 

200 = d4 3 0.2 =A43 0.3  =^43 

220 = dsa 0.1   -- A 5 3 O.i   =^53 

10 = d^ 0.2 - AM :.0 - yl4 

L
JO = d24 0.2  = A 2 4, 0,8  - ^4 

4 - D 80 = d34 90 •0.3 - A3a O.O   .. ^4 

100 = d44 0/2  =^4 0,3  =^44 

^0 - d54 o.i =A54 0.]   =^54 

380 = d15 0.1  - '\5 i.o = y15 

1  - E Ö00 = d25 000 0.8 =A25 0.9  = ^25 

020 = das 0.1  =^35 0,1  = #35 
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To Illustrate the essential character of the llnear-pro- 

gramrning problem for the case of uncertain demand, let us focus 

our attention on a single route—say, Route 1—with probability 

distribution of demand as given in Table 6. Let us suppose that 

■aircraft assigned to Route 1 are capable of hauling 1.00 Yj pas- 

sengers« The first 200 units (in hundreds of passengers) of 

this capability are certain to be used, and revenues from this 

source (negative costs) will be IjJ = k{  units (in thousands of 

dollars) per unit of capability. The next 20 units of this 

capability will be used with probability ^21 = 0.8. Indeed, 

80 per cent of the time the demand will be 220 units or greater, 

while 20 per cent of the time it will be 200 units; hence, the 

expected revenues per unit from this increment of capability is 

0.8 x U = lO.k,  or 10.'1 = k^a, units. On the third increment 

of ^0 units (22,001 to 25,000 seats) the expected revenue is 

0.75 x.  ]) ^  9-B = ki^ai units per unit of capability since there 

is a 2lj per cent chance that none of these units of capability 

will be used and 75 per cent that all will be used. For the 

fourth increment of 20 units (25,001 to 27,000 seats) of capability 

the expected revenue is 0.4 x Ijü = 5.2 = ki^^ units per unit of 

capability, while for the fifth increment of 30 units (27,001 to 

50,000 seats) it is 0.2 x 15 = 2b = ^1^31  units per unit. For 

the sixth increment, which is the number of units assigned above 

the 50,000 seat mark, the expected revenue is 0.0 x 15 = 0 per 

unit since it is certain that none of these units of capability 

can be used. It is clear that no assignments above 50,000 seats 

are worthwhile, and hence the last increment can be omitted. 
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Tho index h =  \,  2,   },  h,  5  will be used to denote the Ist, 2nd, 

..., 'jth increment of demand. 

The number of assigned units in each increment, however, 

can bn viewed as an unknown that depends on the total (passenger- 

hauling) capability assigned to Route J = 1, Thus if the total 

assigned is Y, = 210 units of capability then the part of this 

total belonging to the first increment, denoted by yii, is 

Yii - 200 and the part belonging to the second increment, de— 

noted by ysii is yai ~ 10; the amounts In the higher increments 

ar',J Yi. ; ~ 0 for 1 = j), Jl, 'j. To review, the passenger-carrying 

capability Y, is determined by  the niunber of aircraft assigned 

to Route ,j, so that 

i'j) Yj = p^ x^ + p2J x2J + P^ x;j + pnj x^ . 

On the other hand, Y, itself breaks down into five increments 

(o)    Vj - hi  + y2j + y^j + y.j + ytjJ 

for Routes J = 1, J>,  l\ , and correspondingly fewer for J =2, 5« 

Regardless of the total Y,, the amount y, , belonging to each 

increment is bounded by the total size b, , of that increment; 

the latter, however, is simply the change in demand level, so 

that 

(7)      O^y^Oi^      . b^, 

0 <y2j <d2J -d^ = b2J, 

0^^J ^d3J - d2J ^ b;j' 

0 .y^ ^d^ -d5J . b1(., 

0<y^ <d3J-d1(j =b5j. 
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The total expected revenue from Route J Is, therefore, 

(8)     kJ(!riJ ylJ+y2J y2J + ••■ +^J y5j'' 

where k. la revenue (in thousands of dollars) per 100 passengers 

carried on Route J, and where, as seen in Table 6, 

(9)     1 = 3^ , = ^ , + Ä^ + A,, + AJM + V 
U   U   2J " M3J  "^J   5J 

r2j. =     A2J + A^ + A;|J + A5J 

i; -i' 

For example, the total expected revenue for Route 1 is 

(JO)    iMl.Oyn + .8yl2 4- .75yi3 + ^YM + ^y^). 

The most iniportant fact to note about the linear form (10) is 

the decrease in the successive values of the coefficients y, , . 

Moreover, this will always be the case whatever the distribution 

of demand since the probability of equaling or exceeding a given 

demand level d, . decreases with increasing values of demand. 
hj 

Suppose now that yii, ysij ••» ^e treated as unknown 

variables in a linear-programming problem subject only to (6) 

and (7), where the objective is to maximize revenues.  Let us 

suppose further that Yi is fixed. It is clear, since the co- 

efficient of y)1 is largest in the maximizing form (8), that 

y!! will be chosen as large as possible consistent with (6) and 

(7); for the chosen value y^, the next increment y2i will bo 

chosen as large as possible consistent with (6) and (7), etc. 
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Tliu;!, we need only Gpcclfy y,, by restrictions (6) and (7), 

because when the maxImum is reached the values of the variables 

Viiiyai» ••• are precisely the Incremental values (6) associated 

with Y,.  Even if passenger capability Y, is not fixed, as in 

the case about to be considered, it should be noted that what- 

ever' be the value of Yi the values of yii^Ysi ••■ that minimize 

an over—till cost form such as (l'l) below must maximize (8) Cor 

.i - 1 , so that the Incremental values of Yi will be generated 

by yi i ,y,?i, ... . 

The linear—programming problem in the case of uncertain 

demand becomes : 

UNCERTAIN DEMAND MODEL 

Find numbers x. . and y, ,, and the minimum value of z, 
ij    ^hj' 

satis Cy 1 ng the fo .11 o w ing c ond i 11 on s . 

(11)  Row Sums 

{\2)     Column 
Sums : 

(U) 

xil + ^i2 + "• + ^ln - ai (i - 1, 2, ..., m) 

pljXlJ + P2,JX2J + •'• + pmJXnJ 

ylJ +y2J 4- + yrj  (J = 1, 2, •-. n-l) 

xiJ > 0, (1=1, . .., m; ,j = 1, . . .,, n ) 

0 < yhj < bhj  (h = !» ..•, r; J = 1, ..., n-l) 

(14)  Expected       m  n 
Costs:    z = Z  Z c x 

1=1 ,■1 = 1  iJ 1J 

+ Ro - % ^ I ^i 
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Herc n0 IS the value that expected revenue would be If sufficient 

seats were supplied for all customers. Thus expected costs are 

defined as total outlays (first term) plus the expected loss of 

revenue due to shortage of seats (last two terms). 

For the problem at hand, the bounds b, , and the expected 

revenues /,. per unit for the "incremental variables" y, . can 

be computed from the probability distributions of Table 6 via 

(7) and (9). 

The numerical values of the constants for the stochastic 

case are shown in Table 7. 

Table 7 

INCREMENTAL BOUNDS bh, AND EXPECTED REVENUES k, ^, 

PER UNIT OF ASSIGNED PASSENGER-CARRYING CAPABILITY 

Route 1 Route 2 Route 9 Route '-\ Route 5 

Incre- 
ment h 

bh1 S^hl bh2 k2 ^2 V 9 h9 % \ *hH bh9 S ^5 
1 200 U 90 19 I'lO 7 10 7 980 1 

2 20 10.'1 100 9.1 20 6.9 40 9.6 20 0.9 

3 .50 9-8 * * 20 M 90 4.2 20 0.1 

h 20 9.2 X « 20 2.1 20 2.1 ** 

b 30 2.6 ,1 * 20 0.7 2h0 0.7 ■tf * 

Only two Increments for Route 2 and three Increments for 
Route 9 are needed to describe the distribution of demand. 
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4. RULES FOR COMPUTATION 

The work sheet for determining the optimal assignment 

under uncertain demand is shown In Table 9. To form the new 

row equations (ll), the x. , entries are summed to yield the a. 

values given in the Aircraft Available column. To form the 

column equations (12), the x, . entries are multiplied by the 
1J 

corresponding p, .,   the y. . by -1, ana summed down to yield zero. 
J-J     nj 

Step J . To Initiate the computation any set of non-negative 

values may be assigned to the unknowns x. , and y, , provided they 

satisfy the equations and thereby constitute a feasible solution. 

Step 2. Circle any m + n of the x. , and y, , entries, where 
ij     nj 

m + n is the total number of row and column equations.  These 

circles can be arbitrarily selected except that they must have 

the property that if the fixed values assigned to the other non- 

circled variables and the constant terms were arbitrarily changed 

to other values then the circled variables would be determined 

uniquely in terms of the latter. Such a circled sot of variables 

is called a basic set of variables: the array of coefficients 

associated with this set In the equations (J)) and (12) is re- 

ferred to as the basis in the theory of the simplex method [4J . 

Note: One simple way of selecting a basic set is shown in 

Table 10. One x. ,. entry is arbitrarily selected and circled in 

each row corresponding to a row equation, and one y, , is arbi- 

trarily selected and circled in each column corresponding to a 

column equation. In general, it is suggested that entries be 

circled that appear to have a chance of having a positive value 
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ln an optimum solution; for y, , values, the last entry in the 

column that appears likely to be positive in an optimum solution 

should be circled. 

Step j. For (i,j) and (h,j) combinations corresponding to 

circled entries, compute implicit prices u. and v, associated 

with equations by determining values of u. and v, satisfying the 

equations 

(15) ui + p^v = cij (xij circled), 

(16) 0 + (-IjVj = -kj^j        (yhJ circled). 

There are always m + n equations (15) and (16) in m + n unknowns 

u, and v. that can be shown easily to have a unique solution [4] , 

They can be solved by inspection, for it can be shown that the 

system either is completely triangular or at worst contains sub- 

systems—some triangular and some triangular if one unknown is 

specified .* 

Step 4. For each box corresponding to x, . or y, ., compute 

(17) 51J = (ui + PJJVJ) - ciJ    (for xiJ box), 

(18) 6^ = (0 - Vj) - (-k/hJ)   (for yhJ box). 

*This is the analogue—for the "generalized" transportation 
problem (1), (2), {)),   (4)—of the well-known theorem for the 
standard transportation problem that all bases are triangular. 
Its proof is similar. 
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In practice, one of the S. . or 8'  is recorded; the others are 

computed and compared with it, and the largest in absolute value 

is used.  It can be shuwn Ul that if the x. , or y, . value as- 

sedated with a none ire led entry is changed to 

xij ± 0        or      yhJ i e   (e ^ 0)' 

the other noncircled variables remaining invariant,, and the 

circled variables adjusted, then the expected costs z will change 

to z', where 

z• = z + e6 or     z' = z + e5^, . 

Thus it pays to increase x, , or y, , if 6, , or 5'  > 0; unless 

y . is equal to its upper bound b, ,, in which case no increase 

in y, , is allowed; also it pays to decrease x. , or y, , if 6, , 
hj  ij    hj    ij 

or' % i < 0 unless x, , =0 or y, , =0, in which case no decrease 

is allowed, 

Test for Qptimality:  According to the theory of the simplex 

method [3] if tue noncircled  variables satisfy the follo.ving 

conditions) 

(a.) each one Is at either its upper or its lower bound 
valuu, 

(b) the corresponding 5, .  or  b  is less than or equal 

to 0, if it Is at its lower bound value, and 

(c) the corresponding S, , or 5'  is greater than or equal 

to 0 if it is at its upper bound value, 

then the solution is optimal and the algorithm terminates. Other- 

wise there arc 5., or 5' .  for which a decrease or increase 
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(dcpendlng on whether the sign is negative or positive) in the 

corresponding variable is allowed; let the largest among them 

in absolute value be denoted by b  or 6' . J     rs    rs 

Step 5« Leaving all noncircled entries fixed except for 

the value of the variable corresponding to the (rjS) box deter- 

mined in Step J(, modify the value of x _ (or y _) to rs     ps 

x  +0 (or y  t- 9) if 5 a > 0 (or 6' > 0) rs    v  Jr3   ' rs    v   r^   ' 

x rs 0 (or yr3 - 6) if 6r3 < 0 (or 6^ < 0), 

where G > 0 is unknown, and recompute the values of circled 

variables as linear functions of 6. Choose the value of G = 9* 

as the largest value possible consistent with keeping all basic 

(circled) variables [whose values now depend on G] between their 

upper and lower bounds; in the next cycle correct the values of 

the circled variables on the assumption that 0=6*. 

Also, if at the value G = G* one (or more) of the circled 

variables attains its upper or lower bound, in the next cycle drop 

just one such variable from the basic set and circle the vari- 

able x  instead. Should it happen that it is x  that attains rs ' ^ rs 

its upper or' lower bound at 6 = 0*, the set of circled variables 

is the same as before; their values, however, are changed to 

allow x ^ to be fixed at its new bound.. rs 

Start the next cycle of the iterative procedure by return- 

ing to Step j5 • 
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NUMERICAL SOLUTION OF THE ROUTING PROBLEM 

For our starting solution we used for values of the x. 

the best solution ol' the earlier' study, assiuning fixed demands 

equal to the expected value-; of the distribution.  These are 

shown In Table 10.  These x. , will meet the expected demands, 

so that Y. - b, except for Route S; there is a deficit of 100 
J       iJ 

for1 this route, and by (';) we have Y5 - ',00. These Y, are broken 

down into the successive incremental values shown below the 

double line in Table 10; see Eq. (6). 

Next, one of the variables in each row is circled.  In the 

example, the selected variable', are XM, X22, X35, and X43; each 

appears likely to be in an optimal solution, though X4j  may 

turn out to be a better choice than X43 .  Next, the last positive 

entry in each column is circled; in the example, these are the 

variables yai, y2Z,  yaa, y44, and y15. In all, there are m + n 

circled variables (9 in the example). The implicit values must 

satisfy the m + n, or 9> equations: 

In the humorous parody by Paul Günther, entitled "Use of 
Linear Programming in Capital Budgeting," Journal of the Opera- 
tions Research Society of America, May, 1935; Mrs. Efficiency 
wondered why Mr. 0. R. did not start out with a good guess. It 
will be noted that in this paper we have followed Mrs. Efficiency's 
suggestion and have started with a guess at the final solution 
rather than going through the customary use of artificial vari- 
ables and a Phase 1 of the simplex process. 
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Ui     I-   pi 1V1 1 1 

U2    \    [J22v2    -   c22 

U3 + P35V5 

U4 + P43V3 

0 + (-1 

0 + (-1 

0 + (-1 

0 + (-1 

0 + (-1 

v2 

V3 

V5 

C35 

C43 

-k1^31 

-kg^22 

-k 3 S'a 3 

-k4^44 

~k5yls 

(pM = lu, cu = l8), 

(Pa2=10, C22 = l;-), 

(P35=29, C35=6), 

(P43=22, C43=17), 

(k^3i=9.8)< 

(k2^22=9.1), 

(^3^33=4.9), 

(k4y44=2.l), 

(k5V,s=i.o). 

This permitö the computation of S. . and S' ; see (17) and (18). 

As a check, ^^ < = 0 and 6/ , = 0 for (i,J) and (hj) corresponding 

to circled variables. The 6,, or 8'  of largest absolute value 
ij    hj 

is 

b24 = [-76 -f IS (2.1)]-1'4 = -08.b; 

hence a decrease in the variable x24 with adjustments of the 

circled variables will result in a decrease in the expected 

costs by an amount of 58«5 units per unit decrease in x24.  If 

x24 = 6 is changed to x24 =0-9, then, in order to satisfy 

the column k   equation, the circled variable y44 = 10 must be 

modified lo y44 = 10 - l'-ö (all other variables in column H are 

fixed).  Also, to satisfy the row 2 equation, X22 ■ 8 must be 

modified to X22 =8+0; this in turn causes y22 -  70 to be 

changed to y22 = 70 + 109 in order to satisfy the column 2 

equation. The largest value of 9 is 0* = IO/13/ at which value 

y44 = 0. 



The nuinoflcil  values of  the  variables appearing;  in Table   11 

are  obtalriel   IVorr,   those  of  Table   10 by   setting Q - d*   =   lO/lS. 

The   varlabl"  \-r>4   l)e'Jümi:s  ;:   new  iili'cied   variable   in  place  of  744, 

which  hit   Its   lower1  hound,   /^P  ;   the  other  variables   to   be 

circled   remain  the  same  as   In  Table   10.     Computing  the  new  set 

ol'   la; 11'It  prices,   .■;...■  see   that   the  5. ,  o!'   largest  absolute   value 

that  can  be   Increased  or1 decreased   (according  to  the  sign of 5..) 

is  523       2').^.     Ch-in,',in •,  X23   to      - 9 requires   that   the   variables 

x22i   y2y>;ind  ,y:i3  be  modified  as   .shown   in  Table   11.     The  maximum 

value  of G   Is 0      0"   =  20/14,   at  which  value  we have  y33  =  0. 

The  new solution,   in  which  x23  replaces  733  as  a  circled  variable, 

Is  given   In  Table   12,   wherv   the  decrease   in  the  noncircled   vari- 

uble  x,i !   cau;-.(.>s  changes  in   the  variables  x-13,   x22,   x23,   yai, 

and  Ysa-     The   larg'.'st  value  of 0  Is   j/lu,   at  which  value  y22 

hits   Its  upper  bound   b^^       '00. 

In   the  passage   I'rom TabL:   ] Jj  to Table   I'1*   we  have   taken  a 

"double"   step.     The  maximum   Increase   Is  0 =  8o/2r,),   at  which point 

y!.,  nits   Its  u,';-M'  bound   b,.-,   -  '.^O.     It   Is  easy  to  see   that   if 

next   the   lnrrvn,ental   variable1  y2^   1:;   Inereased   then 632   associated 

With   \3-d   SnOUj  1    1> '   e;i iil^1' 1    to   S3;.   +   \] )    ( '! 0     -   "^2'j)t<5   ~   -J* • J   + 

2,(i.O - .•})   -'.'); ther-'for^, It Is e-cijnomical to Increase y^^ 

as ■.;;.'..I as y 1 ■_, •  Howe^ver, it can be shown that the sign of S32 

would become positive If the next increment, ys^, were considered. 

The maximum value of 0 - 0' is 100/20. 

In the passage from Table lJt to ', , it ,viil be noted that 

the variable1 ,733, which nad been uroppea earlier, is again brougnt 

into the solution.  The maximum value of 0 is 22/20, at wnich 
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value Yas reaches its upper bound, so that the new solution, 

given in Table 1'j, has the same set of circled variables and 

hence the same implicit values as those in Table 14. Moreover, 

the solution is optimal since all noncircled variables are either 

at their upper or lower bounds—those at upper bounds have cor- 

responding S. , > 0 and those at lower bounds have 6., < 0. 

In comparing this solution (Table I'j) with the optimal 

solution for the fixed-demand case (Table :j), it is interesting 

to note that the chief difference appears to be a general ten- 

dency, in the case of distribution with sharp peaks, to shift 

the total seats made available on route to a mode of the dis- 

tribution rather than to the mean of the distribution. The 

total seats made available on routes with flat distributions 

of demand, on the other hand, appear to be at the highest level 

attainable with the residual passenger-carrying potential. 

To compute the expected costs of the various solutions, 

the first step (see Eq. (14)) is to determine what the expected 

revenues Rn would be if sufficient seating capacity were furnished 

at all times to supply all passengers that show. From Table 2 

it is easy to see tnat 

R0 = i;(2rj0) + U(120) + 7(180) + 7(90) + 1(600) = 7500, 

so that the expected revenue would be $7,300,000. 
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Table 8 

COMPARATIVE COSTS OF VARIOUS SOLUTIONS 

Expected 
Revenues Net 

For Expected Expected 
Seats Lost Operating Cost 

Supplied Revenues* Costs (Thousands) 
Table (1) (2) (3) (2) + 0) 

TO -<>j^ 766 900 1,666 

n -6'j74 726 901 1,627 

12 -6607 693 901 1,994 

15 -ooy-; 062 899 1,961 

V\ -u6n i o-,9 88 ji 1,9^2 

-^6^9 u^ 1 PR A 1,9^2 

Data in column (2) are obtained by subtracting the 
expected revenues for seats supplied, column (l), from R = 7300 
= tnc expected revenues if an unlimited number of seats were 
supplied. 

It is seen that the solution presented in the earlier paper 

[l], assuming demands to be exactly equal to their expected values, 

has a net expected cost of $1,606,000,  [it is interesting to 

note that if the demands were fixed and equal to their expected 

values, the costs would be only $1,000,000 (see Table 9).  The 

67 per cent increase in net cost for the variable-demand case 

is due to 13,MOO additional passengers (on tne average) being 

turned away because of the distributions of demand assumed in 

Table 0.]  The successive improvements in the solution given in 

Tables 10 to 19 reduce the net expected costs from $1,666,000 

to $1,924,000 for the optimal solution. 
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In the illustration th(.' best solution obtained by pretend- 

ing thiit Jemand^ are 1'ixecJ at thoüo expected values ban a 9 per 

cent higher expected 'just thnn that for the best solution obtained 

by using the assumed distributions of demand.  It is also seen 

that very little additional computational effort was required 

to take account of this uncertainty uf demand. 



-j2- Table 9 

WORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND 

Route 

(1) (?) 0) CO (b) (6) 
Type 
of 
Air- 
craft 

N.   Y. 
to 
L.   A. 
1-stop 

N.   Y. 
to 
L.   A. 
2—3 to£_ 

N.   Y. 
to 
Dal las 
0-3 to.p 

N.   Y. 
to 
Dallas 
1-stop 

N.  Y. 
to 
Boston 
O-stop 

Sur- 
plus 
Air- 
craft 

Air- 
craft 
Avail- 
able 

Im- 
plicit 
Prices 

Xl 1 •■< 1 z Xl3 X|4 X15 X 1 6 10 

(;) A • 1 1 = 1 '■ J V ?'W^ 2!) 8l 0 

c , ,   1 h 0   ! 18 1') 10 0 Ui 

x22 '<2 3                 X21 X2b X2G 19 

(?)   B N    K     • 10           1 ■'. r- •37 0 

;    \ (') i ;i 9 0 U2 

j X 3 2 .'<3 4 X35 X3G 29 

['A c K   «   » s ,    •" ^ 7 29 0 

10 9 

X4 4 

0 0 U3 

^41                  '< 4 2              |< 4 3 X45 X4G 15 

(M D 9             11. 22 17 9'J 0 

17          1 'J 17 1', 10 0 U4 

Incre- 
mcnt 

(1) 

yM<200 

— i _1 

^13<Ao yi4<io 

-i 
-7 

/15Ö8O 

-] 

-1 

■K  » * 

««« 

0 

/2K20 y22<i 00f/2 3<20 y^'to y25<20 «#« 

(2) -1 -li         -1 -1 — 1 
» « » 

-10.4 -9,1      :   -oo -9. u -.9 0 

yaiOO iy3 3<20 y34<20 y35<20 « » * 

0) -1 W    H   H                                        _1 -i — 1 
* n « 

-9.a   !         1 -i.o -i. 2 -. \ 0 

/.i,<20 /4 3<20 y44<20 ♦ * •)! 

(M -1 '   «*» -1 1 t   *   *                             »   *   i 

-  .2      ! __p -? . 1 0 

/5lO0 ^3<20 y54<2^0 « # » 

1 
-1 

*  ■*   M- -1 -1 ■»  * * (t « » 

-2.0 _// ■y 

 1 
0 

Net 0 0 

v2 

0 

'-'3 

0 0 * * ■« * * * *- « ft 

Im- 
plicit 
Price 3 

V    ; 
■  

V4 v5 0 * * -d Jt ■»(  K 

Box not used because corresponding row or column has no equation, 
or' eise because aircraft type cannot fly required range, or fewer in- 
crerr.ents are needed to describe the distribution of demand on the route. 



RM-l83^ 
12-7-56 

Table 10 - Cycle 0 -33- 

WORK 3HEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND 
624 = ;;8.''t, 0 - lO/l'^, Expected CooL = $1 ,tjbu,000 

Type 
of 
Air- 
craft 

(1) A 

'2) B 

Route 

(1) 

N. Y. 
to 
L. A. 
1-3 top 

© 
16 

18 

(2) 

N. Y. 
to 
L. A. 
2-stop 

lb 

21 

^-9 

N. Y. 
to 
Dallas 
0-stop 

8 

10 

28 

14 

(:0 
N. Y. 
to 
Dallas 
1-stop 

23 

10 

N. Y. 
to 
Boston 
0-stop 

81 

10 

lb 

o-e 

I'I 

i»  c 

CO D 

7.8 

10 

bl 

7 

..U__9_. 
o 

17 

©    i 
11 j    221    17 

o  i 17  I  lb 

29 

3b 

(6) 
Sur- 
plus 
Air- 
craft 

0 

0 

0 

0 

0 

0 

0 

10 0 

Air- 
craft 
Avail- 
able 

10 

19 

2'-: 

15 

Im- 
plicit 
Prices 

ui 

^m 

76 

^21 

- 91 
Incre- 
ment 
(0 

(2) 

200 50 40 10 

•13 

£0 

-10.4 

-1 ' 

') 

•1 
.7 -1 

-1 

@f 100 

-1 

-9-1 

>0 

ri^i. 

4 0 

-5.0    I    -.9 

K   * N 

0 

0 

{'A 
-R.Q. 

(M 

g) 130 
-i|     -i !      -il 

j@-i5e j 
-i' 

-5-2 -2.1 -2.1 

# * k 

0 

0 

(5) 

Net 
Im- 
plicit' 
Prices 

v , 

-2.0 

0 

-1 

0 

-1 

JZJ. 
0 0 

9.8 9-1 4.9 2.1 

0 
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_^_ Table 11 - Cycle 1 

WORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND 
5c-3 = 23.4, 9 - 20/l't, Expected Cost = $1,627,000 

Route 

Air- 
craft 
Avail- 
able 

Typo 
of 
Air- 
craft 

(1) 
N. Y. 
to 
L. A. 
1-stop 

i  (?) 
N. Y. 
to 
L. A. 
2-stop 

j  (^ 
N. Y. 
to 
Dallas 
0-stop 

1 (!0 
N. Y. 
to 
Dallas 
1-stop 

|  (9) 
N. Y, 
to 
Boston 
O-stop 

1 (6) 
Sur- 
plus 
Air- 
craft 

Im- 
plicit 
Prices 

Ui 

(1) A l6 

18 2! 

28 

1 U 
1 ) 

26 

lu 

81 

10 

0 

0 

10 

-199 

(2) B ««» 10 

1 | _ 

I'l 

lb 

3> 
19 ■jl 

9 

0 

0 

19 

-76 

(;) c #»» 

10 

« «« 7 29 

0 

0 

0 

29 

-29 

CO D 

10 

9 

17 

ll 

1Ü 

22 

17 

17 

19 

99 

10 

0 

0 

19 

-91 

Incre- '200 
ment  ; 

(1) 
1 -n 

:>0 

-1 

_ -li 

MO 

-1 

10 

-1 

-7 

-1 

-1 

K # » 

#»« 

0 

;20   f^t-ioe 

UlO.-i  j -J.l 

20 
__ 1 

'10 

-1 -1 

-,9 

II II < 

» »» 

0 

! -9-8 

» M M 

Q-i'ie 90 

-1 

-) . 2 

-1 II ■ > 

* « « 

0 

(M |  --1 
1 _■ 1 

« ^ * 1 

-2.1 

- -1 

-2 . 1 

- - » II II - 

> « n 

0 

(b) -1 

-2 . u 

* » * -1 

■ / 

- . / 

•  -1 

- . / 

x )»■ n » » « 

« « « 

0 

Not  i 0 0 0 0 0 * * » * ■» # * # * 

Im-   | 
Plie it 
Prices 

Vj 
9.8 9-1 '1.9 'J  ! 1 0 * # » w * * 
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Table 12  Cycle 2 _33_ 

WORK SHEET FOB DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND 
6,11 = -'3^.8, 0 - 9/l'J-  Expected Cost - $1//j'l ,000 

Route 

Air- Type 
i     (0 
N.   Y. 

1    (2) 
M .  Y . N.   Y. 

(M 
N .   Y. 

(9) 
!   N.   Y. 

(6) 
Sur- Im- 

of to to to to \  to plus craft plicit 
Air- L.   A L.   A . Dal la 3 Dallas i  Boston Air- Avail- Prices 
craft 1-3 top 2-3top 0-3 top 1-stop 0-stop craft able 1      Ui 

P 10 

(1 )  A 16 lb 28 2) 1           0l 0 

IB 21 

(Toj)+1 60 

18 lo 

Q)  ' 
i _10___ 0 

19 

-U9 

(2)   B «MM 10 1H 1'. 97 0 

1;, 16 I'l ;j 0 - 76 
7.8 ( VI.2J 29 

0) c *   *   * ', N   II   K 7 29 0 

10 f) b 0 -2) 

10-e ©■9 19 
(n)  D 9 11 22 17 99 0 

17 lo 17 1;. 10 0 -128 

Incre- 200 SO ino 10 ^00) #«.* 

ment 
(0 

1 

-1 -1 
; 

-lj            -1 -1 ■K   *■ « 

-1; -l; -7         j 

20 

-1 -1 0 

20 @+l60 '-0 « . * 

(2) -1 -1 
1 

-1 1          -1 
1 

-1 M   K  h 

-10,1 -<J . 1 -J).)      1   -j ,' -.9 0 

g-9e   | bo *»« 

(>) -1 «   II   K 

-1!    ~] — 1 » r « 

-9.8 -n,9 -J| .2 -.1 0 
x n * 

(H) -1 

-•;.2   ; 

M   K   H -1 

-2 .1 

-1 

-2.1 

. ■ « «  »   K 

0 

* « ■« 

CO -1 

~2.o 

«   )t   » -1 

-.7   l 

-1 

7          1 

ie «■» «- » n 

0 

Net 0 0 ^1 0 ol ** *■ ♦ « *       I * ** 

Im- 
plicit | 9.8 9.1 6.6    ; 6 1 0 

* -11- # ■)(■*« 

Prices i 
v,l      1 

1 
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^i-a  = b'r),   O = 100/29 - V*:', Expected Cost - $1 ,'.;ül ,000 

Table \:) -  Cycle j5 

Route 

A i r- Type; 
(:) 

N.  Y. 
(?) 

N.   Y. 
(3) 

N.   Y. 
CO      (;0 

N.   Y.       N.  Y. 
(0) 

Sur- Im- 
or to to to to                  to               plU3 craft plicit: 
A I r- L.   A . Da J 1 .-i 3 Dallas Bostoni Air- Avail- VvIces 
-i'.-il't 1 - 3 t Ü p 2-r.top 0-3 Lop l-stop 0-3top craft able ui 

© 10 

(1)  A ]■)        r,, 28 2; 81 0 

1 H T 1 

G-0 
l 8 

0^-; o 
1 , 
i     J 10 0 _1 V1 

0 19 

(.-) n ••«    i        10 I ' t I 
:  7 0 

1 
i      '. . ! u 1 ;t ^ 0 . -JiO 

7.8-e JTT^+O 
(^ c N   »  » 11 

10 

»»♦ 7 
9 

29 

6 

0 

0 -2,3 

(g)-.3Ö                 ( 19 

(M D 'j1          11 22 17 l^ 0 

17     ;      lo 17 1 :.; 10 0 -71 

Incre- 200 b0 ino 10 röo+290 *   N   H 

ment 
(1) 

-1 i          -1 

-Ij     1   -U      1    -7 

-1 
"7 

~' a   •   ■ 

0 

20              100 20 ■i0 -   »- X 

(2) 
, 1 _i -1 — ; «   h  x 

-10 .'•       - '. 1     '    ---''.) 

jO 

_ , 1 1 

-   •   • 
0 

Ü) _ 1 1     ... -i __ 1 ¥   *   * 

-0 .8     :                i -'• . CJ —» . 2 - .   1 0 

; *   ■   ■ 

(;l) -,; .-■   i      -; 
_i >   H   a •    M    • 

—       ,? -j. 1 __'.'   1 0 
M    «    H 

(to 
■ 

-I1    •" -1 •   M   « J(    ft    )( 

-2.0                         -.7 -." (J 

Me t 0     !          0             0     j         0 0 
it    *    * *    *    * i  • » 

Im- 1 
1                1                1 

I 

plicit 
Priceö 9.8 •> .•- 4 ) -ö 1 Ü *   *   * ft   .   . 

V 1 
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FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND 
--.'.), 0 - 20/22  ■■   .9, Expected Cost = $1,542,000 

TibJn M - Cycle 'I 

(   1    )   ^ 

R uute 

(2) 0) (M (5) (6) 
Type N.   Y. N.   Y. N.   Y. N.   Y. M.   Y. Sur- Air- Im- 
of to to to to to plus craft plicit 
Air- L.   A. L.   A . Dallas Dallas Boston Alr- Avail- Prices 
craft 1-stop 2-Ci tup 0-otop l-stop 0-stop c ra 1' t able ui 

® 10 

(1 )   A 16 11 
1 J 2 "' 25 81 0 

-—  2 1 1') 10 0 -\^ 

0 19 

(2)   H ■   ■   1 ' 10 '; !\ 1 :^ ■7 0 

(p)-- 
1 ' < 1 'f v   \ 0 -    'iO 

JOT) 2- 

(->)   c t   •   ' • t • 29 0 

iO 'i 0 0 - Q 

(JTo-e (027 lO !•; 

CO D ') " I no 1               1 v 1   1 0 

Ji_ ■') 
1 ' ' I ;, 10 0 ■y • 

Incre- 200 '0 210 10 ;,80 «   X   -K 

men L 
f 1 'I 

—i --1 -1 1 -1 »   • « 
I ' / 

—1'} — I Jj -■' 

1 
— 1 0 

20 100          20 ■iO JO N  -N  « 

(2) 
1 1 —', — 1 ■  *  ' 

-' 0 .•( —"    '   .   ' -'). 'j      —■.. 'J — .     ' J 

O-..0 ( 220 20 h   «   x 

(.•') 
( 

t   t    • 

■ i   , - ( 
- 

... 

u 
1 

*   »   it 

(•) -'. 
i      , , 

1«   •   ' ■   1   « 

G 
t 

K   f   M 

(' ) -'. « « »                    _.' -'. X   ♦   N (1  »  ■ 

-2 .'.) —.' 0 

Net 0 0 (1 0 0 >  « Ji A     fl     * *  i   > 

Im- 
pliclt 
Priceo 'J.ß b-b ■ f 'j •' > 

0 0 »1»ft- it   f   f 
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Table I1; - Cycle 
(Optimal) 

WORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND 
Minimum Expected Cost $1 ;52jkOQO 

Type 
of 
Air- 
craft 

Route 

(1) 

N. Y. 
to 
L. A. 
1—stop 

(2) 

Y. N. Y.  N 
to   ■ to 
L. A. jDallay 
2-stop 0-stop 

(M 
N. Y. 
to 
Dallas 
1-stop 

(5) 

N. Y. 
to 
Büüton 
0-stop 

(6) 

Sur- 
plus 
Air- 
craft 

Air- 
craft 
Avail- 
able 

Im- 
plicit 
Prices 

;(T0 

(1)   A   : 16 

18 

10 

15 28 2:5 31 0 

21 lb 0 

(2)   B 

12^ Ks 
10 

iii 
19 

!      15 10 

Ml 
b 

10 

:;7 

0 40 

(3)   C 

20.7 2b 

29: 0 

0 0 18 

Tx 
(4) D 9i 11 

!       17    j      lo 

T.6- lb 
22 

17 

17 5b 0 

lb 10 0 71 
Incre-^00        ' 50 
me n t 

(1) 
1 

1140 10 

-1 j -l| -1 
380 

I_a__JL_l_d V 
120 100 20 ^0 120 

(2)    ,       -11 

! -10.4    -9.1 

-1 _1        « » « 

o , 'j      -b . 0   1    -. 9 

© 20 

0) -i;   *** 
-9.8 -Ji /j 

30 

(M 

(5) 

Net 

L-).2 

-2.6 

-2 .1 

4 .2 -.1 

-2. 

0 

Im- 
plicit j      9.8 
Prices | 

v,      I 

0 

b.5 

■•7 

0 

»«» » *« 

0 

5.6 

0 

.8 

1     * * * 

0 
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